複素解析
7月17
今は、複素解析の勉強してます。
今やってるとこは、Morelaの定理と、Liouvilleの定理。
Morelaの定理は、コーシーの積分定理の逆のことで
Liouvilleの定理は、fが複素数平面上Cで正則(整関数)で有界、つまりある定数M>0が存在して|f(z)|≦M,y∈Cが成り立つならば、f(z)は定数。
ってことなんだぁ^^
まぁ、一切意味分かんないけどね^^
あぁ、早く海に行きたい。
下関の海行って早くサーフィンがしたい。
7月17
今は、複素解析の勉強してます。
今やってるとこは、Morelaの定理と、Liouvilleの定理。
Morelaの定理は、コーシーの積分定理の逆のことで
Liouvilleの定理は、fが複素数平面上Cで正則(整関数)で有界、つまりある定数M>0が存在して|f(z)|≦M,y∈Cが成り立つならば、f(z)は定数。
ってことなんだぁ^^
まぁ、一切意味分かんないけどね^^
あぁ、早く海に行きたい。
下関の海行って早くサーフィンがしたい。